Contribution of Polysynaptic Pathways in the Mediation and Plasticity of Ap/ysia Gill and Siphon Withdrawal Reflex: Evidence for Differential Modulation
نویسندگان
چکیده
The gill and siphon withdrawal (GSW) reflex of Aplysia is centrally mediated by a monosynaptic and a polysynaptic pathway between sensory and motor neurons. The first objective of this article was to evaluate quantitatively the relative importance of these two components in the mediation of the GSW reflex. We have used an artificial sea water (ASW) solution containing a high concentration of divalent cations to raise the action potential threshold of the interneurons without affecting the monosynaptic component of the reflex (2:l ASW). Compound EPSPs induced in gill or siphon motor neurons by direct stimulation of the siphon nerve or by tactile stimulation of the siphon skin were reduced by more than 75% in 2:l ASW. These results indicate that interneurons intercalated between sensory and motor neurons are responsible for a considerable proportion of the afferent input to the motor neurons of the reflex. The second objective of this article was to compare the modulation of the monosynaptic and polysynaptic pathways. We have evaluated their respective contribution in sensitization of the GSW reflex by testing the effects of two neuromodulators of the reflex, 5-HT and small cardioactive peptide 6 (SCP,). We found that these two neuromodulators have a differential action on the two components of the GSW neuronal network. The polysynaptic pathway was more facilitated than the monosynaptic pathway by the neuropeptide SCP,. By contrast, 5-HT displayed an opposite selectivity. These results suggest that the polysynaptic component of the neuronal network underlying the GSW reflex is very important for its mediation. The data also indicate that the monosynaptic and polysynaptic components of the reflex can be differentially modulated. The diversity of modulatory actions at various sites of the GSW network should be relevant for learningassociated modifications in the intact animal.
منابع مشابه
Contribution of polysynaptic pathways in the mediation and plasticity of Aplysia gill and siphon withdrawal reflex: evidence for differential modulation.
The gill and siphon withdrawal (GSW) reflex of Aplysia is centrally mediated by a monosynaptic and a polysynaptic pathway between sensory and motor neurons. The first objective of this article was to evaluate quantitatively the relative importance of these two components in the mediation of the GSW reflex. We have used an artificial sea water (ASW) solution containing a high concentration of di...
متن کاملA simplified preparation for relating cellular events to behavior: contribution of LE and unidentified siphon sensory neurons to mediation and habituation of the Aplysia gill- and siphon-withdrawal reflex.
We have begun to analyze several elementary forms of learning in a simple preparation consisting of the isolated mantle organs and abdominal ganglion of Aplysia. Previous studies suggested that plasticity at siphon sensory neuron synapses contributes to habituation and dishabituation of the gill- and siphon-withdrawal reflex in this preparation. We next wished to identify the sensory neurons th...
متن کاملTransfer of Habituation Shows an Interaction between Neuronal Circuits of the Gill Withdrawal Reflex in Aplysia Californica
The gill withdrawal reflex (GWR) and its subsequent habituation can be evoked by tactile stimulation of the siphon or gill when the CNS is either intact or removed. It has been suggested that the neural circuits that mediate the GWR evoked at these two loci are parallel and independent. We provide three lines of evidence which show that these circuits interact and, therefore, comprise a single ...
متن کاملDevelopment of learning and memory in Aplysia. III. Central neuronal correlates.
The defensive withdrawal reflex of the mantle organs of Aplysia californica has 2 major components, siphon withdrawal and gill withdrawal. In the previous paper of this series (Rankin and Carew, 1987), the development of 2 forms of nonassociative learning, habituation and dishabituation, was examined in the siphon withdrawal component of the reflex. In the present study we examined these same f...
متن کاملDifferential role of inhibition in habituation of two independent afferent pathways to a common motor output.
Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk Aplysia, the prevailing view is that homosynaptic depression of primary sensory afferents underlies short-term habituation. Here we examined whether this me...
متن کامل